# H HYDROTECHNIK



DEU

## Patrick

... der Partikelzähler

# Bedienungsanleitung





#### Kontakt Für technische Auskünfte steht unser Kundenservice zur Verfügung:

| Adresse  | HYDROTECHNIK GmbH<br>Holzheimer Str. 94<br>D-65549 Limburg an der Lahn |
|----------|------------------------------------------------------------------------|
| Telefon  | +49 6431 4004 0                                                        |
| Telefax  | +49 6431 45308                                                         |
| E-Mail   | info@hydrotechnik.com                                                  |
| Internet | www.hydrotechnik.com                                                   |

#### **Weitere Informationen**

Wenn Sie mehr über die Produkte und Lösungen von HYDROTECHNIK GmbH erfahren möchten, besuchen Sie unsere Internetseite www.hydrotechnik.com oder setzen Sie sich mit Ihrer lokalen Vertriebsbetreuung in Verbindung.

## Ihre Erfahrungen und Vorschläge

Wir sind stets an Ihren Vorschlägen und Erfahrungen interessiert, die sich aus der Anwendung ergeben und für die Verbesserung unserer Produkte wertvoll sein können.

| Sic   | herheit                                                           |
|-------|-------------------------------------------------------------------|
| Dars  | stellung von Sicherheitshinweisen4                                |
| S     | sicherheitshinweise4                                              |
| Allge | emeine Sicherheitshinweise5                                       |
| C     | Gefährliche elektrische Spannung6                                 |
| L     | aser6                                                             |
|       | ach- und Produktschäden7                                          |
| Г     | Oruckausgleichs-Membrane8                                         |
| War   | naufkleber am Gerät9                                              |
| Ein   | leitung                                                           |
| Gelt  | ungsbereich10                                                     |
|       | yright10                                                          |
|       | ungsausschluss11                                                  |
| Best  | immungsgemäßer Gebrauch12                                         |
| Gara  | antie12                                                           |
| Verp  | flichtungen des Kunden13                                          |
| Auto  | risiertes Personal13                                              |
| Ents  | orgung13                                                          |
| Bes   | schreibung des Gerätes                                            |
| Eige  | nschaften14                                                       |
| Kom   | ponenten des Gerätes15                                            |
| Tech  | nnische Daten17                                                   |
| Maß   | zeichnung18                                                       |
| Inst  | tallation und Inbetriebnahme                                      |
| Einb  | auort19                                                           |
|       | allation19                                                        |
| _     | bschätzung des erforderlichen Druckniveaus                        |
| ٨     | 1ontage20                                                         |
|       | trischer Anschluss21                                              |
| F     | Pinbelegung des Sensoranschlusses21                               |
|       | naloge Stromausgänge (4 20 mA) –<br>lessung ohne Lastwiderstand22 |
|       | naloge Stromausgänge (4 20 mA) –<br>lessung mit Lastwiderstand22  |
| С     | Digitaleingang23                                                  |
|       | sestimmung des erforderlichen astwiderstandes23                   |

| Schaltausgang                                    | . 24 |
|--------------------------------------------------|------|
| Umrechnung analoger Stromausgang zu Ordnungszahl | . 25 |
| Sequenzielle Datenausgabe                        |      |
| Sequenziell                                      |      |
| Sequenziell2                                     |      |
| Inbetriebnahme                                   | 27   |
| Bedienung des Partikelzählers                    |      |
| Navigieren im Menü                               | . 28 |
| Menübaum                                         | 29   |
| Betriebsart wählen                               | 30   |
| Alarme konfigurieren                             | 32   |
| Analogausgang konfigurieren                      | 33   |
| Standard wählen                                  | . 33 |
| Durchfluss konfigurieren                         | . 34 |
| Kommunikation wählen                             | . 34 |
| Display konfigurieren                            | 35   |
| Sensorparameter                                  | 36   |
| Sprache einstellen                               | 36   |
| Kalibrierung                                     | . 37 |
| Kommunikationseinstellungen                      |      |
| Konfiguration der seriellen Schnittstelle        | . 38 |
| Schnittstellenparameter                          | 38   |
| Befehlsliste: Lesebefehle                        | . 39 |
| Kommunikation über USB                           | . 39 |
| CANopen                                          | 40   |
| CAN J1939                                        | 47   |
| Anhang                                           |      |
| Fehlerbehebung                                   | 48   |
| Error Code                                       | 50   |
| Fehleranzeige auf dem Display                    | 51   |
|                                                  |      |

## **Sicherheit**

Das Produkt wurde gemäß den allgemein anerkannten Regeln der Technik hergestellt. Trotzdem besteht die Gefahr von Personen- und Sachschäden, wenn Sie dieses Kapitel und die Sicherheitshinweise in dieser Dokumentation nicht beachten.

- Lesen Sie diese Dokumentation gründlich und vollständig, bevor Sie mit dem Produkt arbeiten.
- Bewahren Sie die Dokumentation so auf, dass sie jederzeit für alle Benutzer zugänglich ist.
- Geben Sie das Produkt an Dritte stets zusammen mit den erforderlichen Dokumentationen weiter.

## Darstellung von Sicherheitshinweisen

Damit Sie mit dieser Dokumentation schnell und sicher mit Ihrem Produkt arbeiten können, werden einheitliche Sicherheitshinweise, Symbole, Begriffe und Abkürzungen verwendet. Zum besseren Verständnis sind diese in den folgenden Abschnitten erklärt.

#### Sicherheitshinweise

In dieser Dokumentation stehen Sicherheitshinweise vor einer Handlungsabfolge, bei der die Gefahr von Personen- oder Sachschäden besteht. Die beschriebenen Maßnahmen zur Gefahrenabwehr müssen eingehalten werden

Sicherheitshinweise sind wie folgt aufgebaut:

#### ▲ Signalwort

#### Art und Quelle der Gefahr

Folgen bei Nichtbeachtung

- Maßnahme zur Gefahrenabwehr
- <Aufzählung>
- Warnzeichen: Macht auf die Gefahr aufmerksam
- Signalwort: Gibt die Schwere der Gefahr an
- Art und Quelle der Gefahr: Benennt die Art und Quelle der Gefahr
- · Folgen: Beschreibt die Folgen bei Nichtbeachtung
- Abwehr: Gibt an, wie man mit der Gefahr umgehen kann

DEU



| Warnzeichen, Signalwort | Bedeutung                                                                                                                                     |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>▲</b> Gefahr         | Kennzeichnet eine gefährliche Situation, in der Tod oder schwere Körperverletzung eintreten werden, wenn sie nicht vermieden wird.            |
| <b>▲</b> Warnung        | Kennzeichnet eine gefährliche Situation, in der Tod oder schwere Körperverletzung eintreten können, wenn sie nicht vermieden wird.            |
| <b>▲</b> Vorsicht       | Kennzeichnet eine gefährliche Situation, in der leichte bis mittelschwere Körperverletzungen eintreten können, wenn sie nicht vermieden wird. |
| Hinweis                 | Kennzeichnet Sachschäden: Das Produkt oder die Umgebung können beschädigt werden.                                                             |

Tabelle: Bedeutung der Warnzeichen

## **Allgemeine Sicherheitshinweise**

- Beachten Sie die gültigen Vorschriften zur Unfallverhütung und zum Umweltschutz.
- Beachten Sie die Sicherheitsvorschriften und -bestimmungen des Landes, in dem das Produkt eingesetzt/angewendet wird.
- Verwenden Sie Produkte der HYDROTECHNIK GmbH nur in technisch einwandfreiem Zustand.
- Beachten Sie alle Hinweise auf dem Produkt.
- Personen, die Produkte der HYDROTECHNIK GmbH montieren, bedienen, demontieren oder warten, dürfen nicht unter dem Einfluss von Alkohol, sonstigen Drogen oder Medikamenten, die die Reaktionsfähigkeit beeinflussen, stehen.
- Verwenden Sie nur vom Hersteller zugelassene Zubehör- und Ersatzteile, um Personengefährdungen wegen nicht geeigneter Ersatzteile auszuschließen.
- Halten Sie die in der Produktdokumentation angegebenen technischen Daten und Umgebungsbedingungen ein.
- Wenn in sicherheitsrelevanten Anwendungen ungeeignete Produkte eingebaut oder verwendet werden, können unbeabsichtigte
  Betriebszustände in der Anwendung auftreten, die Personen- und/oder
  Sachschäden verursachen können. Setzen Sie daher ein Produkt nur
  dann in sicherheitsrelevante Anwendungen ein, wenn diese Verwendung
  ausdrücklich in der Dokumentation des Produkts spezifiziert und erlaubt
- Sie dürfen das Produkt erst dann in Betrieb nehmen, wenn festgestellt wurde, dass das Endprodukt (beispielsweise eine Maschine oder Anlage), in das die Produkte der HYDROTECHNIK GmbH eingebaut sind, den länderspezifischen Bestimmungen, Sicherheitsvorschriften und Normen der Anwendung entspricht.



### Gefährliche elektrische Spannung



#### A Vorsicht

#### Gefährliche elektrische Spannung

- Zerschneiden, beschädigen und modifizieren Sie niemals die Anschlusskabel und legen Sie keine Gegenstände darauf.
- Berühren Sie das Gerät niemals mit nassen oder feuchten Händen.
- Schließen Sie das Gerät nur an Stromquellen an, für die es geeignet ist (siehe technische Daten).
- Ziehen Sie während eines Gewitters das Netzkabel aus der Steckdose.
- Ziehen Sie das Netzkabel aus der Steckdose, wenn Sie eine Geruchs- oder Rauchentwicklung feststellen, oder falls das Kabel beschädigt ist.
- Achten Sie auf eine ordnungsgemäße Erdung ihrer Anlage. Bei fehlerhafter Erdung kann es zu Fehlmessungen kommen.

#### Laser

#### Vorsicht

#### Laser

Der Partikelzähler enthält einen Laser, der bei bestimmungsgemäßem Gebrauch als ein Laser der Klasse 1 nach DIN EN 60825-1:2001-11 klassifiziert ist. Die zugängliche Laserstrahlung ist unter vernünftigerweise vorhersehbaren Bedingungen ungefährlich.

- Bei Lasereinrichtungen der Klasse 1 können im oberen Leistungsbereich z. B. Blendung, Beeinträchtigung des Farbsehens und Belästigungen nicht ausgeschlossen werden.
- Entfernen Sie keinesfalls Abdeckungen und Verkleidungen.



#### Sach- und Produktschäden

#### **Hinweis**

#### Gefahr durch unsachgemäße Handhabung

 Der Partikelmonitor darf nur gemäß der Bestimmungsgemäße Verwendung eingesetzt werden.

#### **Hinweis**

#### Austreten oder Verschütten von Hydraulikflüssigkeit

Umweltverschmutzung und Verschmutzung des Grundwassers

· Verwenden Sie Ölbindemittel, um ausgetretenes Hydrauliköl zu binden.

#### **Hinweis**

#### Verschmutzung durch Flüssigkeiten und Fremdkörper

Vorzeitiger Verschleiß - Funktionsstörungen - Beschädigungsgefahr - Sachschaden:

- Achten Sie bei der Montage auf Sauberkeit, um zu verhindern, dass Fremdkörper, wie z. B. Schweißperlen oder Metallspäne in die Hydraulikleitungen gelangen und beim Produkt zu Verschleiß und Funktionsstörungen führen.
- Achten Sie darauf, dass Anschlüsse, Hydraulikleitungen und Anbauteile (z. B. Messgeräte) schmutzfrei und spanfrei sind.
- Kontrollieren Sie vor der Inbetriebnahme, ob alle hydraulischen und mechanischen Verbindungen angeschlossen und dicht sind, und alle Dichtungen und Verschlüsse der Steckverbindungen korrekt eingebaut und unbeschädigt sind.
- Verwenden Sie für die Beseitigung von Schmiermitteln und anderen Verschmutzungen rückstandsfreie Industrie-Wischtücher.
- Achten Sie darauf, dass Anschlüsse, Hydraulikleitungen und Anbauteile sauber sind.
- Stellen Sie sicher, dass auch beim Verschließen der Anschlüsse keine Verunreinigungen eindringen.
- Achten Sie darauf, dass kein Reinigungsmittel in das Hydrauliksystem eindringt.
- Verwenden Sie zur Reinigung keine Putzwolle oder fasernde Putzlappen.
- Verwenden Sie als Dichtungsmittel keinen Hanf.

#### **Hinweis**

#### Behandeln Sie das Gerät vorsichtig

- Setzen Sie das Gerät nie übermäßiger Wärme oder Feuchtigkeit aus, beachten Sie die technischen Daten.
- Lagern Sie das Gerät nicht an feuchten und staubigen Orten oder bei Temperaturen unter dem Gefrierpunkt.
- Tauchen Sie das Gerät niemals in Wasser oder andere Flüssigkeiten. Lassen Sie niemals Flüssigkeit in das Geräteinnere gelangen.
- Öffnen Sie niemals das Gerät.
- Verwenden Sie das Gerät nicht, nachdem es fallen gelassen wurde oder wenn das Gehäuse beschädigt ist.
- Meiden Sie starke Magnetfelder. Halten Sie das Gerät von Elektromotoren oder anderen Geräten fern, die elektromagnetische Felder erzeugen. Starke Magnetfelder können Fehlfunktionen verursachen und Messwerte beeinflussen.
- Vermeiden Sie Bildung von Kondenswasser. Sollte sich Kondenswasser gebildet haben, lassen Sie das Gerät erst akklimatisieren, bevor Sie es einschalten. Andernfalls kann es beschädigt werden.

DEU

### DEU

### Druckausgleichs-Membrane

#### Hinweis

#### Funktionseinschränkung

Beeinträchtigung der Schutzklasse IP65 durch Beschädigung der Druckausgleichs-Membrane.

 Auf der Rückseite des Geräts befindet sich eine Druckausgleichs-Membrane (A), die keinesfalls beschädigt werden darf. Gehen Sie bei Arbeiten an der Rückseite entsprechend sorgfältig vor.



A Druckausgleichs-Membrane

Bild: Partikelmesser Unterseite

### Warnaufkleber am Gerät

Zur Kennzeichnung von Gefahrenbereichen sind an dem Gerät Warnaufkleber angebracht.

Dieses Kapitel zeigt und erklärt die verwendeten Warnaufkleber.



A Hinweis auf Laserstrahlung

Bild: Hinweis auf Laserstrahlung



A Hinweis der Laserklasse

Bild: Hinweis der Laserklasse

DEU

# **Einleitung**



#### Verlieren Sie keine Ansprüche

Die Informationen und Hinweise in diesem Abschnitt sind wichtig. Durch Nichtbeachtung können Sie eventuelle Ansprüche aus Garantie und Gewährleistung verlieren.

### DEU

### Geltungsbereich

Die vorliegende Betriebsanleitung gilt für Geräte, die mit **Patrick** bezeichnet sind. Sie richtet sich an den Bediener des Gerätes, das heißt die Person, die mit dem Gerät arbeitet. Dies ist kein technisches Handbuch. Für Fragen, die über den Inhalt dieser Anleitung hinausgehen, wenden Sie sich bitte an unseren Kundendienst.

## Copyright

Das Gerät und diese Anleitung sind urheberrechtlich geschützt. Nachbau ohne Genehmigung wird gerichtlich verfolgt. Wir behalten uns alle Rechte an dieser Betriebsanleitung vor, auch die der Reproduktion und/oder Vervielfältigung in irgendeiner denkbaren Form, z. B. durch Fotokopieren, Druck, auf irgendwelchen Datenträgern oder in übersetzter Form. Nachdruck dieser Anleitung nur mit schriftlicher Genehmigung der HYDROTECHNIK GmbH.

Der technische Stand zum Zeitpunkt der Auslieferung von Gerät und Anleitung ist entscheidend, falls keine anderen Informationen gegeben werden. Wir behalten uns technische Änderungen ohne spezielle Ankündigung vor. Frühere Anleitungen verlieren ihre Gültigkeit.

Es gelten die Allgemeinen Verkaufs- und Lieferbedingungen der HYDROTECHNIK GmbH.



## Haftungsausschluss

Wir garantieren die fehlerfreie Funktion unseres Produktes gemäß unserer Werbung, den von uns herausgegebenen Produktinformationen und dieser Anleitung. Weitergehende Produkteigenschaften werden nicht zugesagt. Wir übernehmen keine Haftung für Wirtschaftlichkeit und fehlerfreie Funktion, wenn das Produkt für einen anderen Zweck eingesetzt wird, als im Abschnitt Bestimmungsgemäßer Gebrauch beschrieben wird.

Schadenersatz ist generell ausgeschlossen, außer falls Vorsatz oder grobe Fahrlässigkeit seitens der HYDROTECHNIK GmbH nachgewiesen wird oder falls zugesagte Produkteigenschaften nicht vorhanden sind.

Wird dieses Produkt in Umgebungen eingesetzt, für die es nicht geeignet ist oder die dem technischen Standard nicht entsprechen, sind wir für die Folgen nicht verantwortlich. Wir übernehmen keine Haftung für Schäden an Einrichtungen und Systemen in der Umgebung des Produktes, die durch einen Fehler des Produktes oder in dieser Anleitung verursacht werden. Wir sind nicht verantwortlich für die Verletzung von Patenten und/oder anderen Rechten Dritter außerhalb der Bundesrepublik Deutschland.

Wir sind nicht haftbar für Schäden, die durch unsachgemäße Bedienung und Nicht-Befolgung der Anweisungen in dieser Anleitung entstehen. Wir haften nicht für entgangenen Gewinn und Folgeschäden aufgrund der Nicht-Beachtung von Sicherheits- und Warnhinweisen. Wir übernehmen keine Haftung für Schäden, die durch die Verwendung von Zubehör und/oder Verschleißteilen entstehen, die nicht durch die HYDROTECHNIK GmbH geliefert oder zertifiziert wurden.

Die Produkte der HYDROTECHNIK GmbH sind auf eine hohe Lebensdauer ausgelegt. Sie entsprechen dem Stand von Wissenschaft und Technik und wurden vor der Auslieferung in allen Funktionen individuell überprüft. Die elektrische und mechanische Konstruktion entspricht den geltenden Normen und Richtlinien. Die HYDROTECHNIK GmbH führt laufend Untersuchungen der Produkte und des Marktes durch, um die ständige Weiterentwicklung und Verbesserung ihrer Produkte voran zu treiben.

Im Falle von Störungen und/oder technischen Problemen wenden Sie sich bitte an den Kundendienst der HYDROTECHNIK GmbH. Wir sichern Ihnen zu, dass umgehend geeignete Maßnahmen eingeleitet werden. Es gelten die Garantiebestimmungen der HYDROTECHNIK GmbH, die wir Ihnen auf Wunsch gerne zukommen lassen.

DEU



## Bestimmungsgemäßer Gebrauch

Das Gerät Patrick ist ein optischer Partikelmonitor, der für die Überwachung der Reinheit von Fluiden eingesetzt wird. Er arbeitet nach dem Prinzip der Lichtextinktion und erkennt Partikel und sonstige Fremdkörper im Fluid. Die gemessenen Werte werden in standardisierte Reinheitsklassen umgerechnet und auf dem Display angezeigt.

Über eine serielle Schnittstelle können die Messdaten ausgelesen und zu einem Messgerät übertragen werden. Der Anschluss an das Fluid-führende System erfolgt über zwei MINIMESS® Testpunkte der Schraubreihe 1620.

Jeder andere Einsatz dieses Gerätes gilt als nicht bestimmungsgemäß.

Wenn Sie Fragen haben, oder das Gerät für einen anderen Zweck verwenden möchten, kontaktieren Sie bitte unseren Kundendienst. Wir helfen Ihnen gerne bei eventuell notwendigen Konfigurationen.

### **Garantie**

Für dieses Gerät übernehmen wir im Rahmen unserer Garantiebedingungen die Garantie für einwandfreie Beschaffenheit für die Dauer von sechs Monaten. Verschleißteile und Akkumulatoren sind von dieser Garantie ausgenommen. Der Garantieanspruch erlischt, wenn Reparaturen oder Eingriffe von Personen vorgenommen werden, die hierzu von uns nicht ermächtigt sind.

Innerhalb der Garantiezeit beheben wir unentgeltlich Schäden oder Mängel, die nachweislich auf einem Werksfehler beruhen, sofern uns diese unverzüglich nach Entdeckung, spätestens jedoch innerhalb von sechs Monaten ab Lieferung gemeldet werden. Die Garantieleistung erfolgt nach unserem Ermessen durch kostenlose Instandsetzung mangelhafter Teile oder Ersatz dieser durch einwandfreie Teile.

Senden Sie Geräte, für die eine Garantieleistung beansprucht wird, frachtfrei und mit einer Kopie der Rechnung bzw. des Lieferscheins an die HYDROTECHNIK GmbH Kundendienststelle. Die Adresse finden Sie am Ende dieser Anleitung.

DEU



## Verpflichtungen des Kunden

Der Betreiber dieses Gerätes muss sicherstellen, dass nur Personen, die

- die Regeln der Arbeitssicherheit und Unfallverhütung kennen
- in der Bedienung dieses Gerätes unterwiesen wurden
- diese Anleitung vollständig gelesen und verstanden haben

dieses Gerät verwenden und bedienen können.

Personen, die dieses Gerät bedienen, sind verpflichtet

- alle Regeln der Arbeitssicherheit und Unfallverhütung zu beachten
- diese Anleitung vollständig zu lesen, insbesondere die Sicherheitsanweisungen im ersten Kapitel.

### **Autorisiertes Personal**

Personen werden als autorisiert angesehen, die eine abgeschlossene Berufsausbildung, technische Erfahrung, sowie Kenntnis der einschlägigen Normen und Richtlinien haben und die in der Lage sind, die ihnen übertragenen Aufgaben einzuschätzen und mögliche Gefahren frühzeitig zu erkennen.

Bediener des Gerätes

Personen werden als autorisiert angesehen, die in der Bedienung des Gerätes unterwiesen wurden und diese Anleitung vollständig gelesen und verstanden haben.

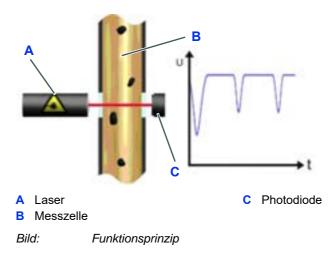
Personal für Installation und Wartung Personen werden als autorisiert angesehen, die in allen Belangen des Gerätes unterwiesen wurden und diese Anleitung vollständig gelesen und verstanden haben.

### **Entsorgung**



#### Hinweise zur Entsorgung

Dieses Produkt nicht mit dem Hausmüll entsorgen.


Ausführliche Hinweise zur Entsorgung finden Sie auf unserer Webseite www.hydrotechnik.com.



# Beschreibung des Gerätes

## Eigenschaften

Das Gerät **Patrick** ist ein optischer Partikelmonitor, der nach dem Prinzip der Lichtextinktion arbeitet:



Er besteht aus einer durchströmten Messzelle (B), einem Laser (A) und einer Photodiode (C). Der Laser durchstrahlt die Messzelle und trifft auf die Photodiode. Durchquert ein Partikel den Laserstrahl, verringert sich die von der Photodiode detektierte Intensität. Je größer der Partikel, desto stärker ist die Verringerung der Lichtintensität.

Mit Patrick lassen sich das Verschmutzungsniveau sowie der Trend der Reinheit von Fluiden beobachten. Dabei können in der absoluten Genauigkeit Unterschiede zu Partikelzählern auftreten, die nach ISO 11171:99 kalibriert sind. Die Abweichung ist aber kleiner als eine Ordnungszahl. Veränderungen werden sehr präzise angezeigt. Durch die kontinuierliche Überwachung der Reinheit lassen sich Veränderungen in einer Maschine sehr schnell erkennen. Dadurch können Maßnahmen ergriffen werden, um eine weitere Kontamination und Schäden am Gesamtsystem zu vermeiden.

Die Anzeige der Reinheitsklasse erfolgt wahlweise gemäß ISO 4406:99, SAE AS4059E, NAS 1638 oder GOST 17216. Das Gerät misst die Temperatur, diese wird nicht im Öl gemessen, sondern auf der Elektronikplatine (Messbereich -20 ... 100 °C). Das Gerät verfügt über einen Betriebsstundenzähler, dessen Werte auch nach Stromunterbrechung noch vorhanden sind. Nach der Unterbrechung fängt der Zähler beim letzten gespeicherten Zeitwert vor der Unterbrechung wieder an zu zählen.

## Online-Messung am Computer

Nach dem Verbinden von **Patrick** mit einem Computer ist es mit Hilfe der HYDROTECHNIK GmbH Software **HYDRO**com 6 möglich, die aktuellen Messdaten auf dem PC anzuzeigen und dort zu speichern.

Bitte beachten Sie die Online-Hilfe von HYDROcom 6 für weitere Hinweise.

## Komponenten des Gerätes



- A Zulauf Fluid
- **B** Drehbare Gerätefront
- C Leuchte Power
- D Leuchte Alarm
- **E** Display

Bild: Ansicht Vorderseite

- F Ablauf Fluid
- G Taste Enter
- H Taste Nach oben
- Taste Nach unten
- J Taste Escape



#### Zulauf Fluid (A) / Ablauf Fluid (F)

Das Gerät ist mit zwei MINIMESSS<sup>®</sup> Testpunkten der Schraubreihe 1620 ausgestattet. Üblicherweise werden hier zwei MINIMESSS<sup>®</sup> Schlauchleitungen angeschlossen, mit denen der Partikelzähler mit dem Fluid-führenden System verbunden wird. Die Messung ist unabhängig von der Durchflussrichtung.

Display (B) / (E)

Die Vorderseite des Gerätes ist um 180° verdrehbar, sodass unabhängig von der Montage das Display immer waagrecht orientiert werden kann. Auf dem sw-Display werden die letzten ermittelten Reinheitsklassen, sowie die Zeit bis zur nächsten Messung, bzw. die verbleibende Dauer der Messung angezeigt.

Leuchte Power (C) Diese Leu

Diese Leuchte zeigt in grün an, ob Betriebsspannung anliegt.

Leuchte Alarm (D)

Diese Leuchte zeigt in rot das Vorliegen eines Alarmes. Im Gerät können drei Alarme programmiert werden, beachten Sie dazu die Ausführungen im Verlauf dieser Betriebsanleitung.

**Tasten (G) ... (J)** Die gesamte Bedienung und Programmierung erfolgt mit vier Tasten:



Ruft aus der Messwertanzeige das Hauptmenü auf Bewegt die Markierung nach oben Erhöht eine Zahl in einem Eingabefeld



Ruft aus der Messwertanzeige das Hauptmenü auf Bewegt die Markierung nach unten

Verringert eine Zahl in einem Eingabefeld



Wählt Menüeinträge aus und öffnet Untermenüs

Bestätigt Eingaben

Springt zur nächsten Zahl in einem Eingabefeld



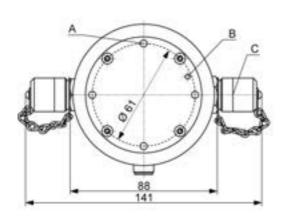
Springt eine Menüebene nach oben

Verlässt das Hauptmenü

Bricht Eingaben ab



## **Technische Daten**


#### Betriebsbedingungen

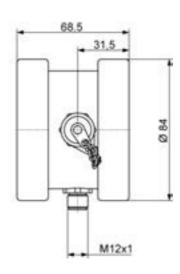

|                              | Zulässiger Betriebsdruck | 420 bar (dynamisch)<br>600 bar (statisch)         |  |
|------------------------------|--------------------------|---------------------------------------------------|--|
|                              | Umgebungstemperatur      | -20 80 °C                                         |  |
|                              | Feuchte                  | 0 95 %                                            |  |
| Lag                          | erbedingungen            |                                                   |  |
|                              | Umgebungstemperatur      | -20 85 °C                                         |  |
|                              | Feuchte                  | 0 95 %                                            |  |
| Flui                         | de                       |                                                   |  |
|                              | Zulässige Fluide         | Mineral- und Esterflüssigkeiten, Polyalphaolefine |  |
|                              | Temperatur Fluid         | -20 80 °C                                         |  |
|                              | Fluidanschlüsse          | 2x ¼" MINIMESSS <sup>®</sup> 1620                 |  |
|                              | Zulässiger Durchfluss    | 50 400 ml/min                                     |  |
| Ben                          | etzte Materialien        | Edelstahl, Saphir, NBR, Chrom                     |  |
| Dich                         | tungsmaterial            | NBR                                               |  |
| Spar                         | nnungsversorgung         | 9 33 V DC                                         |  |
| Stro                         | maufnahme                | Max. 300 mA                                       |  |
| Stromausgänge                |                          | 4 20 mA                                           |  |
| Schi                         | nittstellen              | RS 232, CANopen                                   |  |
| Aları                        | mkontakt                 | Potentialfreier Kontakt                           |  |
| Elektrischer Anschluss       |                          | 8-pol. Stecker M12 x 1                            |  |
| Messbereich nach ISO 4406:99 |                          | 0 24 (Ordnungszahl)                               |  |
| Kalibrierter Messbereich     |                          | 10 22 (Ordnungszahl)                              |  |
| Messgenauigkeit              |                          | ± 1,0 (Ordnungszahl)                              |  |
| Schutzart                    |                          | IP 65                                             |  |
|                              |                          |                                                   |  |

Tabelle: Technische Daten



## Maßzeichnung





- A Vier Befestigungspunkte M5 x 5.5
- **B** Entlüftungsöffnung mit Druckausgleichselement (von innen befestigt)
- C 2 x MINIMESSS® Testpunkte 1620, 2103-01-18.00N

Bild: Maßzeichnung



## Installation und Inbetriebnahme

### **Einbauort**

Bitte beachten Sie diese Hinweise bei der Festlegung des Montageortes:

- Schließen Sie Patrick per T-Verzweigung im Nebenstrom an eine Druckleitung an.
- · Die Durchflussrichtung ist beliebig.
- An der Anschlussstelle sollten möglichst konstante Druckbedingungen herrschen. Der Druck kann variieren, es dürfen jedoch keine Druckspitzen oder starke Schwankungen auftreten.
- Der Anschluss an die Steuerleitung ist zu empfehlen, alternativ bietet sich der Filter- oder Kühlkreislauf an.
- Der Volumenstrom sollte konstant sein und zwischen 50 ... 400 ml/min betragen.
- Durchflussregelung oder Druckminderung sollten immer nach dem Partikelzähler installiert sein, da solche Einrichtungen Partikel oder Luftblasen erzeugen können, die zu Messfehlern führen würden.
- Wenn eine Pumpe zur Erzeugung des benötigten Durchflusses erforderlich ist sollte diese pulsationsarm ausgeführt und vor dem Partikelzähler installiert sein. Ansonsten können bei Anordnung auf der Saugseite Blasen erzeugt werden, die zu Messfehlern führen würden.

### Installation

Beachten Sie vor der Installation diese weiteren Hinweise:

- Achten Sie bei der Installation darauf, dass das Display anschließend gut ablesbar ist. Zur Vereinfachung ist das Display um 180° drehbar.
- Für Anschlussleitungen gilt: je kürzer desto besser. Mit der Länge der Leitung steigt die Gefahr eines Absetzens von größeren Partikeln.
- Achten Sie vor allem bei höheren Viskositäten und der Verwendung von MINIMESS<sup>®</sup> Schläuchen darauf, dass der Druck hoch genug ist um einen Volumenstrom zwischen 50 ... 400 ml/min einzustellen.
- Achten Sie darauf, dass das gemessene Fluid blasen- und tropfenfrei ist. Blasen und Tröpfchen im Öl erkennt man meist an sehr hohen Ordnungszahlen, bzw. gleichen Ordnungszahlen in verschiedenen Größenkanälen. Mit bloßem Auge sind solche Blasen und Tröpfchen nicht erkennbar.

DEU



### Abschätzung des erforderlichen Druckniveaus

Beachten Sie das ∆p des Partikelzählers in Abhängigkeit von der Viskosität des Fluids:

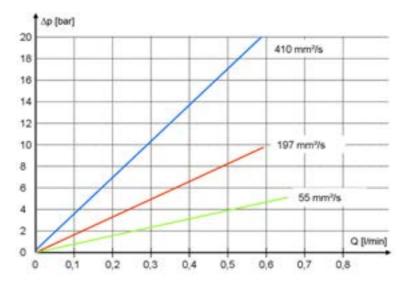



Bild:

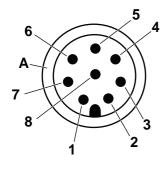
Δp-Q-Kennlinie für unterschiedliche Viskositäten

Hieraus können Sie das erforderliche Druckniveau für den geforderten Volumenstrom von 50 ... 400 ml/min abschätzen.

### Montage

#### → Nun können Sie Patrick installieren:

- 1 Identifizieren Sie einen Einbauort, der den oben genannten Kriterien entspricht.
- 2 Schließen Sie zwei Fluidleitungen an die beiden MINIMESS<sup>®</sup> Testpunkte an
- 3 Befestigen Sie den Partikelzähler mittels der Befestigungspunkte auf der Geräterückseite.




### **Elektrischer Anschluss**

Das Gerät darf nur von einer Elektrofachkraft installiert werden. Beachten Sie die nationalen und internationalen Vorschriften zur Errichtung elektrotechnischer Anlagen und führen Sie die Spannungsversorgung nach EN 50178, SELV, PELV, VDE0100-410/A1 aus. Verwenden Sie das HYDROTECHNIK GmbH Netzteil 8812-00-00.36 in Verbindung mit dem Y-Verteiler 8808-50-01.03.

Schalten Sie für die Installation die Anlage spannungsfrei und schließen Sie das Gerät folgendermaßen an.

### Pinbelegung des Sensoranschlusses



| Pin | Funktion                  |
|-----|---------------------------|
| 1   | +U <sub>B</sub>           |
| 2   | GND                       |
| 3   | TxD, CAN-L                |
| 4   | RxD, CAN-H                |
| 5   | Digital Input             |
| 6   | IOUT1                     |
| 7   | Open Collector, Alarm OUT |
| 8   | SGND                      |
| Α   | Gehäuse / Schirm          |

Tabelle: Pinbelegung bei Draufsicht auf den Sensordeckel

Die zulässige Betriebsspannung liegt zwischen 9 ... 36 VDC. Verwenden Sie nur geschirmte Sensorkabel. Um die Schutzklasse IP 65 zu erreichen, dürfen nur geeignete Stecker und Kabel verwendet werden. Das maximale Anzugdrehmoment für den Stecker beträgt 0,1 Nm.



### Analoge Stromausgänge (4 ... 20 mA) – Messung ohne Lastwiderstand

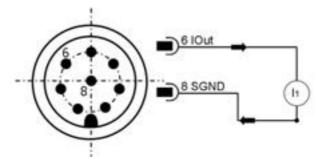



Bild: Vermessung des analogen 4 ... 20 mA Ausgangs ohne Lastwiderstand

Führen Sie die Strommessung mit einem geeigneten Messgerät durch. Die Zuordnung des gemessenen Stromwertes zur Kenngröße wird weiter unten erläutert.

### Analoge Stromausgänge (4 ... 20 mA) – Messung mit Lastwiderstand

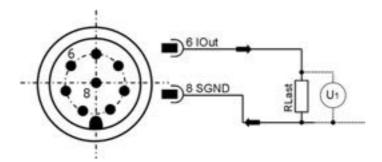



Bild: Vermessung des analogen 4 ... 20 mA Ausgangs mit Lastwiderstand

Um die Ströme der beiden analogen Stromausgänge messen zu können, muss ein Lastwiderstand an jeden Ausgang angeschlossen werden. Der Lastwiderstand sollte, je nach Versorgungsspannung, zwischen 250 und 2.600  $\Omega$  liegen. Mit einem Voltmeter können Sie die Spannung messen, die über dem jeweiligen Widerstand abfällt.

Mit der in **Schaltausgang** auf Seite 24 beschriebenen Formel können Sie aus den gemessenen Spannungen die Ordnungszahl der Reinheitsklasse ermitteln.



### Digitaleingang

Der Digitaleingang ist *HIGH – aktiv*. Er ist aktiv sobald die Versorgungsspannung anliegt und *floatet* wenn keine Spannung anliegt.

Eine Messung dauert so lange, wie der Digitaleingang NICHT mit Masse verbunden ist. Ist der Eingang mit Masse verbunden, stellt sich ein Strom ein von

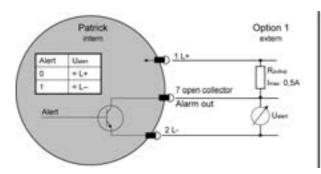
$$I = (U - 1,1 V) / 5.600 \Omega$$

mit U = Versorgungsspannung.

### Bestimmung des erforderlichen Lastwiderstandes

Der Lastwiderstand kann nicht beliebig gewählt werden. Passen Sie ihn gemäß der Versorgungsspannung des Sensors an. Berechnen Sie den maximalen Lastwiderstand entweder mit der folgenden Formel, oder entnehmen Sie ihn der danebenstehenden Tabelle.

| Formel                                            | U <sub>V</sub> in V | $R_{\text{max}}$ in $\Omega$ |
|---------------------------------------------------|---------------------|------------------------------|
| $R_{\text max} = \frac{U - 2V}{20mA} - 100\Omega$ | 9                   | 250                          |
| 20mA                                              | 12                  | 400                          |
|                                                   | 18                  | 600                          |
|                                                   | 24                  | 1.000                        |
|                                                   | 30                  | 1.300                        |


Tabelle: Bestimmung des erforderlichen Lastwiderstandes



## **Schaltausgang**

Der Schaltausgang ist nicht kurzschlussfest, hat keine Überstrom- oder Übertemperatursicherung.

Die maximale Schaltspannung beträgt 36 VDC.



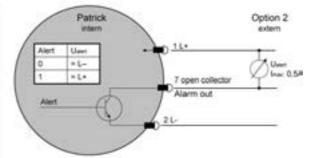



Bild: Schaltausgang

| Opt    | ion 1  |
|--------|--------|
| Intern | Extern |
| Alert  | Ualert |
| 0      | = U+   |
| 1      | = 0    |

| Opt    | ion 2  |
|--------|--------|
| Intern | Extern |
| Alert  | Ualert |
| 0      | = 0    |
| 1      | = U+   |



### Umrechnung analoger Stromausgang zu Ordnungszahl

Der analoge Stromausgang liefert ein Signal von 4 ... 20 mA. Im Folgenden sind die Umrechnungen zu den jeweiligen Ordnungszahlen beschrieben.

| I/mA | ISO 4406:99 | SAE AS4059E |
|------|-------------|-------------|
| 4    | 0           | 000         |
| 12   | 13          | 5           |
| 20   | 26          | 12          |

Tabelle: Vergleichstabelle Stromausgang zu Ordnungszahl ISO und SAE

| I/mA | NAS 1638 | GOST 17216 |
|------|----------|------------|
| 4    | 00       | 00         |
| 12   | 7        | 15         |
| 13   | 8        | 17         |
| 14   | 9        | -          |
| 15   | 10       | -          |
| 16   | 11       | -          |
| 17   | 12       | -          |
| 20   | -        | -          |

Tabelle: Vergleichstabelle Stromausgang zu Ordnungszahl NAS und GOST

| Standard    | Formel Ordnungszahl |
|-------------|---------------------|
| ISO 4406:99 | 1,625 * I/mA - 6,5  |
| SAE AS4059E | 0,875 * I/mA - 5,5  |
| NAS 1638    | I/mA - 5            |
| GOST 17216  | 2 * I/mA - 9        |

Tabelle: Umrechnung Ordnungszahlen

### Sequenzielle Datenausgabe

Für die Standards ISO 4406:99 und SAE AS4059E können Sie eine sequenzielle Datenausgabe wählen.

Es gibt zwei Modi für die sequenzielle Datenausgabe:

- Sequenziell
- Sequenziell2



#### Sequenziell

Nach einer Startsequenz (S) werden nacheinander die Messwerte für die verschiedenen Größenklassen übermittelt. Nach einer Pause beginnt der nächste Zyklus mit der Übermittlung der Startsequenz.

Für NAS und GOST steht keine sequentielle Ausgabe zur Verfügung.

#### Sequenz 1 - 5

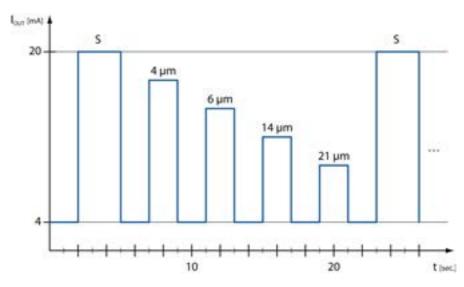



Bild: Sequenz bei der Ausgabe aller Parameter nacheinander

#### Sequenziell2

Der **Sequenziell2** Modus ist eine Erweiterung des **Sequenziell** Modus. Die Erweiterung besteht aus den drei folgenden Sequenzen:

#### Sequenz 6

|                                                  |   |   |   | I/n | nA |    |    |    |
|--------------------------------------------------|---|---|---|-----|----|----|----|----|
| Bedeutung                                        | 5 | 7 | 9 | 11  | 13 | 15 | 17 | 19 |
| Fluss zu gering<br>ERC 1, Bit 10                 | 1 | 1 | 1 | 1   | 0  | 0  | 0  | 0  |
| Fluss zu hoch<br>ERC 1, Bit 9                    | 1 | 1 | 0 | 0   | 1  | 1  | 0  | 0  |
| Fehler in Messzelle<br>ERC 4, Bit 0, 1, 2 oder 3 | 1 | 0 | 1 | 0   | 1  | 0  | 1  | 0  |





| Sequenz 7 |  |
|-----------|--|
|-----------|--|

|                                               |   |   |   | I/n | nA |    |    |    |
|-----------------------------------------------|---|---|---|-----|----|----|----|----|
| Bedeutung                                     | 5 | 7 | 9 | 11  | 13 | 15 | 17 | 19 |
| Konzentration zu gering<br>ERC 1, Bit 14      | 1 | 1 | 1 | 1   | 0  | 0  | 0  | 0  |
| Konzentration zu hoch ERC 1, Bit 8            | 1 | 1 | 0 | 0   | 1  | 1  | 0  | 0  |
| Messergebnis nicht plausibel<br>ERC 1, Bit 13 | 1 | 0 | 1 | 0   | 1  | 0  | 1  | 0  |

#### Sequenz 8

|                                      |   |   |   | I/n | nA |    |    |    |
|--------------------------------------|---|---|---|-----|----|----|----|----|
| Bedeutung                            | 5 | 7 | 9 | 11  | 13 | 15 | 17 | 19 |
| Alarm Konzentration<br>ERC 4, Bit 14 | 1 | 1 | 1 | 1   | 0  | 0  | 0  | 0  |
| Alarm Temperatur<br>ERC 4, Bit 15    | 1 | 1 | 0 | 0   | 1  | 1  | 0  | 0  |
| ISO(i+1) ≥ ISO(i)<br>ERC 1, Bit 11   | 1 | 0 | 1 | 0   | 1  | 0  | 1  | 0  |

<sup>⇒</sup> Liste aller ERCs: Error Code auf Seite 50

## Inbetriebnahme

Der Partikelzähler beginnt sofort mit den Messungen und gibt nach einer Minute die ersten Messergebnisse auf dem Display aus.

# Bedienung des Partikelzählers

## Navigieren im Menü

Die Bedientasten sind so belegt:



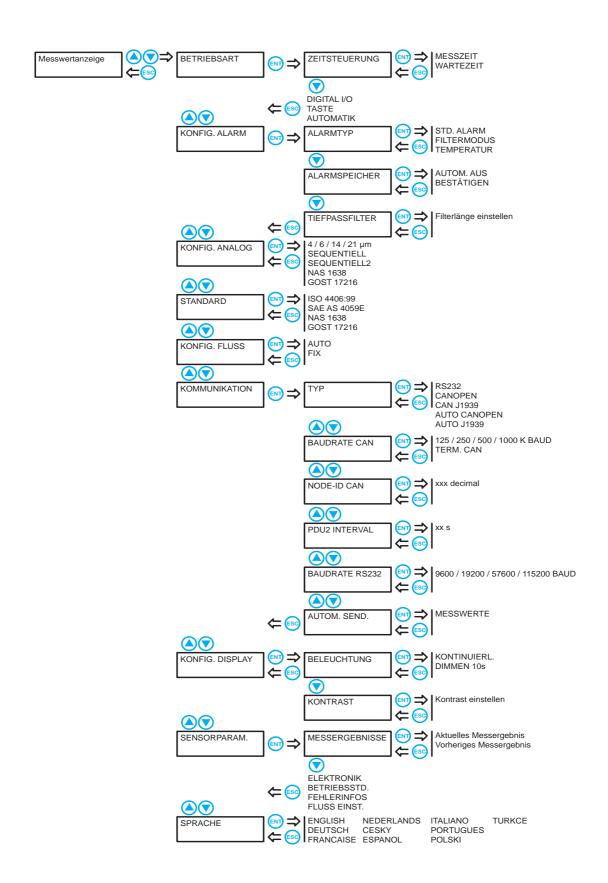
Ruft aus der Messwertanzeige das Hauptmenü auf Bewegt die Markierung nach oben Erhöht eine Zahl in einem Eingabefeld



Ruft aus der Messwertanzeige das Hauptmenü auf Bewegt die Markierung nach unten Verringert eine Zahl in einem Eingabefeld



Wählt Menüeinträge aus und öffnet Untermenüs Bestätigt Eingaben Springt zur nächsten Zahl in einem Eingabefeld




Springt eine Menüebene nach oben Verlässt das Hauptmenü Bricht Eingaben ab



### DEU

### Menübaum





Im Folgenden werden die einzelnen Untermenüs und Funktionen chronologisch beschrieben.

### Betriebsart wählen



#### Mindest-Messdauer beachten

Eine Messdauer von 30 Sekunden sollte in keinem Fall unterschritten werden, da sonst u.U. die Partikelzahl nicht vollständig erfasst werden kann. Je sauberer das Öl ist, desto länger sollte gemessen werden. Reinheitsgrade nach ISO 4406:99 von 15 und besser sollten mindestens alle 120 Sekunden nachgemessen werden.

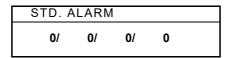
Patrick kann in drei Betriebsarten verwendet werden:

| Zeitsteuerung | Patrick arbeitet mit der eingestellten Messdauer und Wartezeiten zwischen den Messungen.  Beispiel: eine Minute Messdauer und vier Minuten Wartezeit liefern alle fünf Minuten ein Ergebnis. Tatsächlich dauert es etwa zwei bis drei Sekunden länger, da zu Beginn jeder Messung der Laser eingeregelt wird.  Drücken Sie bei aktivierter und markierter Option Zeitsteuerung noch einmal um Messdauer und Wartezeit einzustellen:  • Messdauer:  Drücken Sie um mit der Eingabe zu beginnen.  Bei der ersten Ziffer erscheinen Pfeile.  Drücken Sie um zur nächsten Ziffer einzustellen.  Drücken Sie um zur nächsten Ziffer zu wechseln.  Stellen Sie so alle Ziffern der Messdauer ein, bestätigen Sie mit um und drücken Sie esc.  • Wartezeit:  Stellen Sie die gewünschte Wartezeit so ein, wie für die Messdauer beschrieben |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital I/O   | Die Messung dauert an, solange ein Signal am Eingang anliegt. Der digitale Eingang ist aktiv, wenn er mit Masse verbunden wird. Dann stellt sich ein Strom von I = (U - 1,1 V) / 5600 $\Omega$ mit U = Versorgungsspannung ein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

DEU

| Taste     | Drücken Sie die Taste um eine Messung zu starten und zu beenden.                                                                                                                                                                                                                                                                                                                         |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automatik | Im Automatikmodus wird die Messzeit dynamisch, abhängig vom Durchfluss und der Partikelkonzentration, bestimmt.                                                                                                                                                                                                                                                                          |
|           | Die Messung kann zwischen 45 und 300 Sekunden dauern. Ein Messwert ist frühestens nach 45 Sekunden zu erwarten, wenn in dieser Zeit die definierte Anzahl an Partikel detektiert wurde. Wenn die definierte Anzahl Partikel auch nach 300 Sekunden nicht detektiert wurde, wird die Messung abgebrochen und das Ergebnis angezeigt. Das Ergebnis ist dann nicht statistisch abgesichert. |




## Alarme konfigurieren

#### **Alarmtyp**

Hier wählen Sie zunächst den Alarmtyp:

| Std. Alarm  | Sobald ein Kanal eine eingestellte Schwelle überschreitet wird der Alarm ausgelöst.                                                                                                                                              |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Filtermodus | Dient zum Überwachen einer Reinigung:<br>Sobald alle aktivierten Kanäle eine Schwelle unterschrit-<br>ten haben wird der Alarm ausgelöst.                                                                                        |
| Temperatur  | Sobald die Temperatur den eingestellten Grenzwert überschreitet, wird der Alarm ausgelöst.  Um den Alarm zu deaktivieren, muss der Grenzwert 00 sein.  Die gemessene Temperatur entspricht nicht direkt der Temperatur des Öles. |

Aktivieren Sie den gewünschten Alarmtyp mit im und drücken Sie erneut im um die Alarmschwellen anzuzeigen:



Drücken Sie um mit der Eingabe zu beginnen. Bei der ersten "Null" erscheinen Pfeile. Drücken Sie v um die erste Alarmschwelle einzustellen. Drücken Sie v um zur nächsten Größenklasse zu wechseln. Stellen Sie so die Alarmschwellen für alle Größenklassen ein. Soll eine nicht berücksichtigt werden, setzen Sie deren Wert auf 0.

Die für den Standard-Alarm eingestellten Schwellen gelten auch für den Filtermodus, und umgekehrt.

#### Alarmspeicher

Hier wählen Sie das Verhalten von **Patrick** beim Vorliegen eines Alarmes. Dieser kann entweder automatisch abgeschaltet werden (**Autom. aus**), oder bis zu einer Quittierung durch Tastendruck (**Bestätigen**) aktiv bleiben.

#### **Tiefpassfilter**

In einem Hydrauliksystem können kurzfristige Konzentrationserhöhungen (Spitzen) auftreten, die nicht repräsentativ für das Gesamtsystem sind. Der Partikelzähler detektiert diese Veränderung und zeigt diese korrekt an.

Der Tiefpassfilter sorgt dafür, dass bei einer eingestellten Alarmgrenze nicht bei jeder Spitze ein Alarm ausgelöst wird. Die für den Alarm relevanten Partikelkonzentrationen werden intern geglättet und nur bei einer nachhaltigen Messwertänderung ein Alarm ausgegeben. Die Messwertausgabe und Anzeige sind von der Filterung nicht betroffen.

- Bei einem Volumenstrom von 0 ml/min oder einer ISO Klasse von 0 bei 4  $\mu m$  ist die Filterfunktion automatisch deaktiviert.
- Einstellbereich: 1 ... 255 (1 = deaktiviert)
- Werkseinstellung: 2Empfohlener Wert: ≤10

## Analogausgang konfigurieren

Hier wählen Sie, welche Daten über den Analogausgang ausgegeben werden sollen:

| 4 μm<br>6 μm<br>14 μm<br>21 μm | Wählen Sie eine Größenklasse, deren Messwert über den analogen Ausgang ausgegeben werden soll.  Die Ausgabe erfolgt linear in ganzen Ordnungszahlen (4 mA entspricht der Ordnungszahl "Null", 20 mA der Ordnungszahl "26").  Die Ausgabe ist abhängig vom eingestellten Standard |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | ISO oder SAE. Die maximale Bürde hängt von der Versorgungsspannung ab: $R_{\mathrm max} = \frac{U-2V}{20mA} - 100\Omega$                                                                                                                                                         |
| Sequenziell                    | Die Messwerte aller Größenklasse werden nacheinander ausgegeben.  ⇒ Sequenziell auf Seite 26                                                                                                                                                                                     |
| Sequenziell2                   | Die Messwerte aller Größenklasse werden nacheinander ausgegeben. Zusätzlich werden Alarme ausgegeben.  ⇒ Sequenziell2 auf Seite 26                                                                                                                                               |
| NAS 1638                       | Ausgabe unabhängig vom eingestellten Standard. Auf dem LCD kann also ISO, SAE oder GOST angezeigt werden, über den analogen Stromausgang wird jedoch NAS ausgegeben.                                                                                                             |
| GOST 17216                     | Ausgabe unabhängig vom eingestellten Standard. Auf dem LCD kann also ISO, SAE oder NAS angezeigt werden, über den analogen Stromausgang wird jedoch GOST ausgegeben.                                                                                                             |

### Standard wählen

Die Anzeige der Reinheit kann nach einem der folgenden Standards gewählt werden:

- ISO 4406:99
- SAE AS4059E
- NAS 1638
- GOST 17216

Beachten Sie bei der Anzeige gemäß SAE, dass die Größenklassen 38 und 70  $\mu m$  nicht in separaten Kanälen, sondern zusammen mit der Größenklasse 21 ausgewertet werden.





Die Einstellung bezieht sich nur auf die Anzeige im Startbildschirm. Im internen Speicher und bei der Ausgabe über die digitale Schnittstelle (CAN oder RS232) sind alle Standards sichtbar.

Welcher Standard gewählt ist, ist am Startbildschirm unten links zu erkennen.

## **Durchfluss konfigurieren**

Patrick erfasst zusätzlich zur Partikelgröße und -anzahl auch den Durchfluss, um daraus die Konzentration zu errechnen. Dies geschieht, wenn die Option Auto eingestellt ist (empfohlener Durchfluss: 100 ... 400 ml/min).

Da jede Messung jedoch mit einer Ungenauigkeit behaftet ist, können Sie einen bekannten Durchfluss fest einstellen. Daraus wird dann die Konzentration berechnet. Stellen Sie die Option **Fix** ein und drücken Sie nochmals **...**:



Drücken Sie w um mit der Eingabe zu beginnen. Bei der ersten Stelle erscheinen Pfeile. Drücken Sie w um die erste Ziffer einzustellen. Drücken Sie w um zur nächsten Ziffer zu wechseln. Stellen Sie so den Durchfluss ein.

Wählen Sie einen Durchfluss, der dem tatsächlichen Durchfluss ähnlich ist. Bei größerer Abweichung wird die berechnete Konzentration verfälscht.

### Kommunikation wählen

Hier definieren Sie die Konfiguration der digitalen Schnittstelle.

## Typ der Schnittstelle wählen

| RS 232                      | Ausgabe der Daten über die RS 232 Schnittstelle.                                                                                          |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| CANopen                     | Ausgabe der Daten über CAN-Bus im CANopen Protokoll.                                                                                      |
| CAN J1939                   | Ausgabe der Daten über CAN-Bus im CAN J1939 Protokoll.                                                                                    |
| Auto CANOPEN <sup>(a)</sup> | Die Angeschlossenen Schnittstellen wird automatisch<br>erkannt. Wenn der Typ CAN erkannt wird, wird das<br>CANopen Protokoll verwendet.   |
| Auto J1939 <sup>(a)</sup>   | Die Angeschlossenen Schnittstellen wird automatisch<br>erkannt. Wenn der Typ CAN erkannt wird, wird das<br>CAN J1939 Protokoll verwendet. |

<sup>(</sup>a) Bei Typ **Auto** wird der Typ anhand des physikalischen Spannungspegels an der digitalen Schnittstelle ermittelt. Die Ermittlung erfolgt einmalig beim Einschalten des Partikelzählers.



#### **Baudrate CAN**

Wählen Sie die Geschwindigkeit der Datenübertragung der CAN Schnittstelle. Die gewählte Geschwindigkeit muss mit der Ihres CAN-Bus übereinstimmen, ansonsten ist eine Kommunikation nicht möglich.

| 50 / 125 / | Wählen Sie die Geschwindigkeit in kBaud.                                  |
|------------|---------------------------------------------------------------------------|
| Term. CAN  | Schaltet einen 120 $\Omega$ Widerstand zum Abschluss des CAN-Stranges zu. |
|            | Diese Option sollte immer aktiviert sein                                  |

**Node-ID CAN** 

Hier können Sie die eingestellte Node-ID des Partikelzählers anzeigen. Diese benötigen Sie, um CAN-Befehle richtig zu adressieren, bzw. CAN-Signale richtig zuzuordnen.

**PDU2 Interval** 

Hier können Sie einstellen, mit welchem Intervall das PDU2 gesendet wird. PDU2 wird nur bei CAN J1939 verwendet.

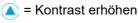
**Baudrate RS 232** 

Wählen Sie die Geschwindigkeit der Datenübertragung der RS 232 Schnittstelle. Die gewählte Geschwindigkeit muss mit der Ihres Systems übereinstimmen, ansonsten ist eine Kommunikation nicht möglich.

**Automatisches Senden** 

Hier können Sie einstellen, ob die Messwerte automatisch über die RS232 Schnittstelle gesendet werden.

## Display konfigurieren


Für das Display stehen verschiedene Einstellmöglichkeiten zur Verfügung.

Beleuchtung:

Auswahl ob die Hintergrundbeleuchtung dauerhaft aktiv sein soll oder nach 10 Sekunden automatisch deaktiviert wird.

· Kontrast:

Anpassung des Kontrastes über eine Balkendarstellung.



🔻 = Kontrast senken

m = Bestätigung



## Sensorparameter

In diesem Menüpunkt können Sie verschiedene Parameter des Partikelzählers anzeigen:

| Messergebnisse | Zeigt die letzten Messergebnisse der Größenklassen, sowie den Index des Volumendurchflusses an.  Drücken Sie wum die Anzeige zwischen den Größenklassen umzuschalten.  Drücken Sie wum das vorherige Messergebnis anzuzeigen.                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Elektronik     | Zeigt verschiedene Messwerte der Elektronik an. Drücken Sie vum weitere Parameter anzuzeigen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Betriebsstd.   | Zeigt die Anzahl der Betriebsstunden von Sensor und Laser an.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fehlerinfos    | Zeigt eine Liste der angefallenen Fehlermeldungen und Alarme an.  Drücken Sie  um durch die verfügbaren Meldungen zu blättern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fluss einst.   | <ul> <li>Hier wird der Pegel des Volumendurchflusses angezeigt.</li> <li>Befindet sich der Balken zwischen L und H, ist der Durchfluss in Ordnung.</li> <li>Füllt der Balken das ganze Diagramm, bzw. ist kein Balken zu sehen und H/L blinkt, ist der Durchfluss zu hoch bzw. zu niedrig und muss nachgeregelt werden.</li> <li>Die Grenzen der Anzeige (Balkendiagramm) liegen zwischen L = 50 ml/min und H = 400 ml/min.</li> <li>Die Darstellung wird alle 10 Sekunden aktualisiert.</li> <li>Wenn der Fluss FIX auf einen statischen Wert eingestellt ist, wird dies ebenfalls dargestellt. Der Balken ändert sich dann jedoch nicht.</li> </ul> |

## Sprache einstellen

Wählen Sie eine der verfügbaren Sprachen für die Anzeige der Bedienmenüs.



## Kalibrierung

Der Partikelzähler wird in Anlehnung an ISO 11943 kalibriert.

Die Ausrüstung, die für die Kalibrierung benutzt wird, wird gemäß ISO 11171 primärkalibriert und ist somit rückführbar auf NIST SRM 2806A.

Das Kalibrierzertifikat des Partikelzählers besitzt bei der Erstkalibrierung eine Gültigkeit von 18 Monaten. Folgezertifikate werden mit einer Gültigkeit von 12 Monaten ausgestellt.

#### Kalibrierungshinweis

Die notwendige Kalibrierung zeigt der Partikelzähler durch eine Meldung auf dem Display.

KALIBRATION NOTWENDIG

Lassen Sie den Partikelzähler vom Hersteller kalibrieren.

- Drücken Sie die Eingabetaste 2 Sekunden lang, um die Meldung zu quittieren.
- Die Meldung erscheint nach 500, 800 und 900 Stunden erneut.
- Nach 1000 Stunden blinkt die Meldung im 2 Sekundentakt.
- Der Partikelzähler ist jederzeit voll bedienbar und liefert Messergebnisse.

Die verbleibenden Stunden bis zum Erscheinen der ersten Meldung (HOURSCAL) können Sie im Menü des Partikelzählers unter SENSORPARAM > BETREIBSSTD sehen.

# Kommunikationseinstellungen

## Konfiguration der seriellen Schnittstelle

**Patrick** kann über eine serielle Schnittstelle ausgelesen und konfiguriert werden. Dazu benötigen Sie einen PC mit einer installierten Terminal-Software.

Schließen Sie **Patrick** an einen freien COM-Port des Computers an. Ein geeignetes Kommunikationskabel für die serielle Verbindung zwischen Sensor und PC/Steuerung ist als Zubehör erhältlich. Sollte der Rechner über keinen serienmäßigen COM-Port verfügen, so besteht die Möglichkeit, eine serielle Schnittstellenkarte oder einen USB-Seriell-Umsetzer einzusetzen.

### Schnittstellenparameter

Baudrate: 9600 / 57600

Daten-Bits: 8Parität: keineStopp-Bits: 1

Flusskontrolle: Keine



### Befehlsliste: Lesebefehle

| Befehl    | Bedeutung                                                                 | Rückgabeformat                                                                                                                                                                                                                                                                              |
|-----------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RVal[₊J]  | Lesen der aktuellen Mess-<br>werte mit anschließender<br>Checksumme (CRC) | \$Time:%.4f[h];ISO4µm:%i[-];ISO6µm:%i[-];ISO14µm:%i[-];<br>ISO21µm:%i[-];SAE4µm:%i[-];SAE6µm:%i[-];SAE14µm:%i[-];<br>SAE21µm:%i[-];Conc4µm:%.2f[p/ml];Conc6µm:%.2f[p/ml];<br>Conc14µm:%.2f[p/ml];Conc21µm:%.2f[p/ml];FIndex:%i[-];<br>Mtime:%i[s];Status:0x0000; 0x0000;0x0000;0x0000;CRC:x |
| RMemS[CR] | Lesen der Anzahl der spei-<br>cherbaren Datensätze                        | MemS: xxxx[CR][LF]                                                                                                                                                                                                                                                                          |
| RMemU[CR] | Lesen der Anzahl der<br>gespeicherten Datensätze                          | MemU: xxxx[CR][LF]                                                                                                                                                                                                                                                                          |
| RMem[₊]   | Lesen aller gespeicherten<br>Messwerte                                    | Time [h]; T [°C]; P [-];P40 [-];PTG [1/K]; [CR][LF] x.xxx;x.xxxx;x.xxxx;x.xxxx; x.xxxx; [CR][LF]                                                                                                                                                                                            |
| RID[₊]    | Lesen der Identifikation mit<br>anschließender<br>Checksumme (CRC)        | Hydrotechnik;Patrick;SN:xxxxxx-xxx; SW:xx.xx.xx;CRC:x 1)                                                                                                                                                                                                                                    |
| RCon[₊]   | Lesen der aktuellen Konfiguration                                         | Smode:%i;Fmode:%i;Analog:%i; Amode:%i;Alarm4:%i;Alarm6:%i; Alarm14:%i;Alarm21:%i;(Mtime:%i[s];Htime:%i[s])                                                                                                                                                                                  |

Tabelle: Befehlsliste: Lesebefehle

Bitte kontaktieren Sie unseren Kundendienst, wenn Sie eine vollständige Liste mit allen Befehlen benötigen.

## Kommunikation über USB

**Patrick** kann über eine USB-Schnittstelle ausgelesen werden. Dazu benötigen Sie einen PC mit der installierten Software **HYDRO**com 6.

Schließen Sie **Patrick** an eine USB-Schnittstelle des Computers an. Ein geeignetes RS 232 – USB Konverterkabel ist als Zubehör erhältlich. Beachten Sie die Hinweise in der Online-Hilfe der Software **HYDRO***com* 6 für weitere Informationen.



## **CANopen**

Der Partikelzähler kann in Bus-Systeme eingebunden werden, die dem CANopen Standard entsprechen. Eine ausführliche Beschreibung von CANopen und der zugrundeliegenden Architektur ist in verschiedenen Fachund Lehrbüchern enthalten.

# CANopen Object Dictionary

Die Tabelle enthält den kommunikations-bezogenen Teil des Objektverzeichnisses des Partikelzählers. Die möglichen Einstellungen entsprechen, bis auf wenige Ausnahmen, dem CANopen Standard wie er in "DS-301" beschrieben wird

| ldx   | Sldx | Name                     | Тур         | Attr. | Standard        | Anmerkungen                                                                                                                                                     |
|-------|------|--------------------------|-------------|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1000h | 0    | Gerätetyp                | unsigned 32 | ro    | 194h            | Sensor, siehe DS404                                                                                                                                             |
| 1001h | 0    | Fehlerliste              | unsigned 8  | ro    | 00h             | Obligatorisch, siehe<br>DS301                                                                                                                                   |
| 1017h | 0    | Heartbeat-Zeit           | unsigned 16 | rw    | 1388h           | Heartbeat-Zeit in ms,<br>Bereich: 0 65535                                                                                                                       |
| 1018h |      | Identitätsobjekt         | record      | ro    |                 |                                                                                                                                                                 |
|       | 0    | Anzahl Einträge          | unsigned 8  | ro    | 04h             | Größter Sub-Index                                                                                                                                               |
|       | 1    | Hersteller ID            | unsigned 32 | ro    | 000001C0h       | HYDROTECHNIK                                                                                                                                                    |
|       | 2    | Produkt-Code             | unsigned 32 | ro    | 12D5C74Ch       | 12D5C74Ch                                                                                                                                                       |
|       | 3    | Versionsnummer           | unsigned 32 | ro    | 1000            | Geräteabhängig                                                                                                                                                  |
|       | 4    | Seriennummer             | unsigned 32 | ro    |                 | Geräteabhängig                                                                                                                                                  |
| 1800h | _    | Übertrage PDO1 Parameter | record      |       |                 |                                                                                                                                                                 |
|       | 0    | Anzahl Einträge          | unsigned 8  | ro    | 05h             | Größter Sub-Index                                                                                                                                               |
|       | 1    | COB-ID                   | unsigned 32 | rw    | 180h<br>+NodeID | COB-ID von PDO verwendet, Bereich: 181h 1FFh, kann geändert werden wenn ausgeschaltet (Bit 30 muss immer gesetzt sein, bedeutet kein auf RTR getriggertes TPDO) |
|       | 2    | Übertragungsart          | unsigned 8  | rw    | FFh             | Zyklisch + synchron, asynchron<br>Werte: 1 240, 254, 255                                                                                                        |
|       | 5    | Ereigniszeitnahme        | unsigned 16 | rw    | 1F4h            | Ereigniszeit in ms für asyn-<br>chrone TPDO1, Wert muss<br>Vielfaches von 50 und<br>max 12700 sein                                                              |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 1 von 7)

<sup>(</sup>a) Auf PDO gemapped



| ldx   | Sldx | Name                        | Тур         | Attr. | Standard        | Anmerkungen                                                                                                                                                     |
|-------|------|-----------------------------|-------------|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1801h |      | Übertrage<br>PDO2 Parameter | record      |       |                 |                                                                                                                                                                 |
|       | 0    | Anzahl Einträge             | unsigned 8  | ro    | 05h             | Größter Sub-Index                                                                                                                                               |
|       | 1    | COB-ID                      | unsigned 32 | rw    | 280h<br>+NodeID | COB-ID verwendet von PDO, Bereich: 281h 2FFh, kann geändert werden wenn ausgeschaltet (Bit 30 muss immer gesetzt sein, bedeutet kein auf RTR getriggertes TPDO) |
|       | 2    | Übertragungsart             | unsigned 8  | rw    | FFh             | Zyklisch + synchron, asyn-<br>chron                                                                                                                             |
|       |      |                             |             |       |                 | Werte: 1 240, 254, 255                                                                                                                                          |
|       | 5    | Ereigniszeitnahme           | unsigned 16 | rw    | 1F4h            | Ereigniszeit in ms für asynchrone TPDO2 Bereich: 0 65000                                                                                                        |
| 1802h |      | Übertrage PDO3 Parameter    | record      |       |                 |                                                                                                                                                                 |
|       |      |                             |             | ro    |                 |                                                                                                                                                                 |
|       | 0    | Anzahl Einträge             | unsigned 8  | ro    | 05h             | Größter Sub-Index                                                                                                                                               |
|       | 1    | COB-ID                      | unsigned 32 | rw    | 380h+Nodel<br>D | COB-ID verwendet von PDO, Bereich: 381h 3FFh, kann geändert werden wenn ausgeschaltet (Bit 30 muss immer gesetzt sein, bedeutet kein auf RTR getriggertes TPDO) |
|       | 2    | Übertragungsart             | unsigned 8  | rw    | FFh             | Zyklisch + synchron, asyn-<br>chron<br>Werte: 1 240, 254, 255                                                                                                   |
|       | 5    | Ereigniszeitnahme           | unsigned 16 | rw    | 1F4h            | Ereigniszeit in ms für asynchrone TPDO3 Bereich: 0 65000                                                                                                        |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 2 von 7)

<sup>(</sup>a) Auf PDO gemapped



| ldx   | Sldx | Name                                                          | Тур         | Attr. | Standard  | Anmerkungen                                         |
|-------|------|---------------------------------------------------------------|-------------|-------|-----------|-----------------------------------------------------|
| 1A00h |      | TPDO1 Mapping Parame-<br>ter                                  | record      |       |           |                                                     |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 05h       | Größter Sub-Index                                   |
|       | 1    | PDO Mapping für erstes<br>zu mappendes Anwen-<br>dungsobjekt  | unsigned 32 | со    | 20000220h | Betriebsstundenzeitstem-<br>pel der Messung, 4 Byte |
|       | 2    | PDO Mapping für zweites<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20010108h | ISO4µm, 1 Byte im 2001h,<br>sub 01                  |
|       | 3    | PDO Mapping für drittes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20010208h | ISO6µm, 1 Byte im 2001h,<br>sub 02                  |
|       | 4    | PDO Mapping für viertes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 33 | со    | 20010308h | ISO14µm, 1 Byte im<br>2001h, sub 03                 |
|       | 5    | PDO Mapping für fünftes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20010408h | ISO21µm, 1 Byte im<br>2001h, sub 04                 |
| 1A01h |      | TPDO2 Mapping Parameter                                       | record      |       |           |                                                     |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 05h       | Größter Sub-Index                                   |
|       | 1    | PDO Mapping für erstes<br>zu mappendes Anwen-<br>dungsobjekt  | unsigned 32 | со    | 20000220h | Betriebsstundenzeitstem-<br>pel der Messung, 4 Byte |
|       | 2    | PDO Mapping für zweites<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | СО    | 20020108h | SAE4µm, 1 Byte im 2002h,<br>sub 01                  |
|       | 3    | PDO Mapping für drittes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 33 | СО    | 20020208h | SAE6µm, 1 Byte im 2002h,<br>sub 02                  |
|       | 4    | PDO Mapping für viertes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20020308h | SAE14µm, 1 Byte im<br>2002h, sub 03                 |
|       | 5    | PDO Mapping für fünftes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20020408h | SAE21µm, 1 Byte im<br>2002h, sub 04                 |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 3 von 7)

<sup>(</sup>a) Auf PDO gemapped



| ldx   | Sldx | Name                                                          | Тур         | Attr. | Standard  | Anmerkungen                        |
|-------|------|---------------------------------------------------------------|-------------|-------|-----------|------------------------------------|
| 1A02h |      | TPDO3 Mapping Parameter                                       | record      |       |           |                                    |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 05h       | Größter Sub-Index                  |
|       | 1    | PDO Mapping für erstes<br>zu mappendes Anwen-<br>dungsobjekt  | unsigned 32 | со    | 20000120h | Betriebsstundenzähler,<br>4 Byte   |
|       | 2    | PDO Mapping für zweites<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20030108h | Öl-Zustandsbits, 1 Byte            |
|       | 3    | PDO Mapping für drittes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20030708h | Messbits, 1 Byte                   |
|       | 4    | PDO Mapping für viertes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20030808h | Sensorstatusbits, 1 Byte           |
|       | 5    | PDO Mapping für fünftes<br>zu mappendes Anwen-<br>dungsobjekt | unsigned 32 | со    | 20040008h | Temperatur, 1 Byte                 |
| 2000h |      | Zeitbezogene Sensorpa-<br>rameter                             | record      |       |           |                                    |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 02h       | Größter Sub-Index                  |
|       | 1    | Betriebsstundenzähler <sup>1</sup>                            | unsigned 32 | ro    |           | Sensorbetriebszeit in<br>Sekunden  |
|       | 2    | Betriebsstundenzeitstem-<br>pel der Messung <sup>1</sup>      | unsigned 32 | ro    |           | Zeitstempel der letzten<br>Messung |
| 2001h |      | ISO Messung                                                   | record      |       |           |                                    |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 04h       | Größter Sub-Index                  |
|       | 1    | ISO4μm <sup>1</sup>                                           | unsigned 8  | ro    |           |                                    |
|       | 2    | ISO6μm <sup>1</sup>                                           | unsigned 8  | ro    |           |                                    |
|       | 3    | ISO14μm <sup>1</sup>                                          | unsigned 8  | ro    |           |                                    |
|       | 4    | ISO21µm <sup>1</sup>                                          | unsigned 8  | ro    |           |                                    |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 4 von 7)

<sup>(</sup>a) Auf PDO gemapped





| ldx   | Sldx | Name                 | Тур        | Attr. | Standard | Anmerkungen                                    |
|-------|------|----------------------|------------|-------|----------|------------------------------------------------|
| 2002h |      | SAE Messung          | record     |       |          |                                                |
|       | 0    | Anzahl Einträge      | unsigned 8 | ro    | 04h      | Größter Sub-Index                              |
|       |      |                      |            |       |          |                                                |
|       | 1    | SAE4µm <sup>1</sup>  | unsigned 8 | ro    |          | Offset von zwei um 000, 00                     |
|       | 2    | SAE6µm <sup>1</sup>  | unsigned 8 | ro    |          | ─und 0 darzustellen,<br>gilt für alle Klassen: |
|       | 3    | SAE14µm <sup>1</sup> | unsigned 8 | ro    |          | 0 = SAE 000                                    |
|       | 4    | SAE21µm <sup>1</sup> | unsigned 8 | ro    |          | 1 = SAE 00                                     |
|       | •    | o,                   | ag         |       |          | 2 = SAE 0                                      |
|       |      |                      |            |       |          | 3 = SAE 1                                      |
|       |      |                      |            |       |          | 4 = SAE 2                                      |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 5 von 7)

<sup>(</sup>a) Auf PDO gemapped



| ldx   | Sldx | Name                               | Тур         | Attr. | Standard | Anmerkungen                                                       |
|-------|------|------------------------------------|-------------|-------|----------|-------------------------------------------------------------------|
| 2003h |      | Condition Monitoring Bit-<br>field | array       |       |          |                                                                   |
|       | 0    | Anzahl Einträge                    | unsigned 8  | ro    | 08h      | Größter Sub-Index                                                 |
|       | 1    | Öl-spezifische Bits <sup>1</sup>   | unsigned 8  | ro    |          | 0 = Konz.grenze über-<br>schritten (C >= ISO 23)                  |
|       |      |                                    |             |       |          | 1 = Durchfluss hoch<br>(F > 400)                                  |
|       |      |                                    |             |       |          | 2 = Durchfluss niedrig<br>(F < 50)                                |
|       |      |                                    |             |       |          | 3 = Messwerte nicht plausi-<br>bel (Luft), ISO (i+1) >=<br>ISO(i) |
|       |      |                                    |             |       |          | 4 = AutoMode: MessZeit erreicht                                   |
|       |      |                                    |             |       |          | 5 = Autoparts nicht erreicht                                      |
|       |      |                                    |             |       |          | 6 = Konzentration zu<br>gering                                    |
|       | 2    | reserviert                         | unsigned 8  | ro    |          |                                                                   |
|       | 3    | reserviert                         | unsigned 8  | ro    |          |                                                                   |
|       | 4    | reserviert                         | unsigned 8  | ro    |          |                                                                   |
|       | 5    | reserviert                         | unsigned 8  | ro    |          |                                                                   |
|       | 6    | reserviert                         | unsigned 8  | ro    |          |                                                                   |
|       | 7    | Messinformationen <sup>1</sup>     | unsigned 8  | ro    |          | 0 = Messung läuft                                                 |
|       |      |                                    |             |       |          | 1 = Messmodus auto                                                |
|       |      |                                    |             |       |          | 2 = Messmodus I/O                                                 |
|       |      |                                    |             |       |          | 3 = Messmodus manuell                                             |
|       |      |                                    |             |       |          | 4 = Alarmmodus Filter /<br>Standard                               |
|       | 8    | Sensoralarm <sup>1</sup>           | unsigned 8  | ro    |          | 0 = Laserstrom hoch<br>(I > 2,8 mA)                               |
|       |      |                                    |             |       |          | 1 = Laserstrom niedrig<br>(I < 1 mA)                              |
|       |      |                                    |             |       |          | 2 = Photospannung hoch<br>(U > 4V)                                |
|       |      |                                    |             |       |          | 3 = Photospannung niedrig<br>(U < 4V)                             |
|       |      |                                    |             |       |          | 4 = Temperatur hoch<br>(T > 80°C)                                 |
|       |      |                                    |             |       |          | 5 = Temperatur niedrig<br>(T < -20°C)                             |
| 2004h | 0    | Sensortemperatur <sup>(a)</sup>    | signed 8    | ro    |          | Öltemperatur in °C                                                |
| 2005h | 0    | Durchflussindex                    | unsigned 16 | ro    |          | Durchflussindex (0 400)                                           |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 6 von 7)

(a) Auf PDO gemapped



| ldx   | Sldx | Name                                                          | Тур         | Attr. | Standard            | Anmerkungen                                                                                                                            |
|-------|------|---------------------------------------------------------------|-------------|-------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2020h |      | Befehl                                                        | unsigned 8  | wo    |                     | 1 = Messung Start                                                                                                                      |
|       |      |                                                               |             |       |                     | 2 = Messung Stop                                                                                                                       |
| 2030h |      | Messeinstellungen                                             | record      |       |                     |                                                                                                                                        |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 2h                  | Größter Sub-Index                                                                                                                      |
|       | 1    | Messzeit                                                      | unsigned 32 | rw    |                     | Messzeit in s                                                                                                                          |
|       | 2    | Wartezeit                                                     | unsigned 32 | rw    |                     | Zeit zwischen<br>zwei Messungen                                                                                                        |
| 2031h |      | Starteinstellungen                                            | record      |       |                     |                                                                                                                                        |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 1h                  | Größter Sub-Index                                                                                                                      |
|       | 1    | Start-Modus                                                   | unsigned 16 | rw    | 0h                  | 0 = Netzwerk mit NMT Master (Init => PreOp => Start_Remote_Node => Operational) >0 = Netz- werk ohne NMT Master (Init => Operational)  |
| 2100h |      | Kontrollfunktionen Spei-<br>cher lesen                        | record      |       |                     |                                                                                                                                        |
|       | 0    | Anzahl Einträge                                               | unsigned 8  | ro    | 3h                  | Größter Sub-Index                                                                                                                      |
|       | 1    | Größe des History-Spei-<br>chers                              | unsigned 32 | ro    | geräteabhän-<br>gig | Speichergröße in Daten-<br>sätzen                                                                                                      |
|       | 2    | Verwendeter History-Spei-<br>cher                             | unsigned 32 | ro    |                     | Belegte Datensätze im<br>Speicher (entspricht intern<br>dem Schreibzeiger)                                                             |
|       | 3    | Lesezeiger, Datensatz                                         | unsigned 32 | rw    |                     | Auto-inkrementeller Lese-<br>zeiger auf einen Daten-<br>satz zum Lesen des<br>History-Speichers                                        |
|       |      |                                                               |             |       |                     | Zwischen 0 und dem aktu-<br>ellen Schreibzeiger                                                                                        |
| 2101h | 0    | Speicherlesen beginnt<br>segmentiertes SDO<br>Daten-Hochladen | unsigned 16 | ro    |                     | Vor dem Lesen muss<br>geeigneter Zeiger gesetzt<br>werden (mit 2100sub3),<br>Datensatzgröße wird nach<br>dem Lesen zurückgesen-<br>det |
|       |      |                                                               |             |       |                     | Damit wird ein standardi-<br>sierter "segmented SDO<br>Upload" initiert                                                                |
|       |      |                                                               |             |       |                     | Zu beachten: bei jedem<br>Datensatz ein Toggle Bit<br>ändern und am Ende der<br>kompletten Übertragung<br>entsprechendes Bit setzen    |

Tabelle: Kommunikations-Profil (Tabellenabschnitt 7 von 7)

(a) Auf PDO gemapped



### **CAN J1939**

Bitte kontaktieren Sie unseren Kundendienst, wenn Sie Informationen zur Implementation des CAN J1939 Protokolls benötigen.



# **Anhang**

# Fehlerbehebung

# Keine Kommunikation am COM-Port oder Stromausgänge < 4 mA

| Kabel nicht korrekt ange-<br>schlossen                             | Schließen Sie das Versorgungs- bzw. Kommunikationskabel richtig an. |
|--------------------------------------------------------------------|---------------------------------------------------------------------|
| Betriebsspannung außer-<br>halb des vorgeschriebe-<br>nen Bereichs | Betreiben Sie den Sensor im Bereich 9 36 VDC.                       |
| Kommunikationsbus falsch konfiguriert                              | Prüfen Sie die Einstellung im Menü Kommunikation.                   |

#### Keine serielle Kommunikation

| Schnittstellenkonfiguration fehlerhaft                | Überprüfen Sie, ob die Schnittstellen-Parameter (9600, 8,1, N, N) in <b>Patrick</b> und PC richtig eingestellt sind. |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Falscher COM-Port                                     | Überprüfen und korrigieren Sie den COM-Port.                                                                         |
| Fehlerhafte Schreibweise der Sensorbefehle            | Überprüfen Sie die Schreibweise der Sensorbefehle, beachten Sie Groß- und Kleinschreibung.                           |
| NumLock-Taste deaktiviert                             | Aktivieren Sie die NumLock-Taste.                                                                                    |
| Feststelltaste ist<br>eingerastet<br>(Großschreibung) | Deaktivieren Sie die Großschreibung, in dem Sie die Umschalttaste lösen.                                             |
| Kabel falsch oder defekt                              | Verwenden Sie ausschließlich Kabel von der HYDROTECHNIK GmbH.                                                        |

#### Identische Messwerte in allen Größenklassen

| Luft im Öl | Schließen Sie den Partikelzähler druckseitig an.                     |
|------------|----------------------------------------------------------------------|
|            | Erhöhen Sie die Entfernung von der Pumpe.                            |
|            | Erhöhen Sie den Betriebsdruck innerhalb des spezifizieren Bereiches. |

DEU



### Alle Größenkanäle zeigen den Wert 0/0/0/0 an

| Kein Volumenstrom                                          | Prüfen Sie die Zu- und Ableitung auf korrekte Installation.<br>Erhöhen Sie den Betriebsdruck innerhalb des spezifizieren Bereiches.                 |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Es liegt kein gültiges<br>Messergebnis vor                 | Prüfen Sie die Konfiguration und den Messmodus.<br>Stellen Sie sicher, dass eine Messung beginnt und abgeschlossen wird.                            |
| Messzelle verschmutzt<br>Im Display blinkt das<br>Symbol ▶ | Reinigen Sie den Partikelzähler mit sauberem Öl oder Lösungsmittel wie z. B. Isopropanol.  Spülen Sie mit sauberem Öl in entgegengesetzte Richtung. |
| Messzelle defekt<br>Im Display blinkt das<br>Symbol ▶      | Kontaktieren Sie die HYDROTECHNIK GmbH.                                                                                                             |

### Fehlmessung der analogen Stromausgänge

| Falscher Parameter wird | Korrigieren Sie die Zuordnung der Messwerte zu den Stromausgängen. |
|-------------------------|--------------------------------------------------------------------|
| ausgegeben              |                                                                    |

### Auf dem Display steht dauerhaft no valid application Das Gerät startet immer wieder neu

| Das Basissystem hat eine | Kontaktieren Sie die HYDROTECHNIK GmbH. |
|--------------------------|-----------------------------------------|
| Störung.                 |                                         |
| Alle Kommunikations-     |                                         |
| leitungen werden automa- |                                         |
| tisch deaktiviert.       |                                         |

### Laserstrom hoch / Photospannung niedrig

| Luft im Öl            | Schließen Sie den Partikelzähler druckseitig an. Erhöhen Sie die Entfernung von der Pumpe. Erhöhen Sie den Betriebsdruck innerhalb des spezifizieren Bereiches. |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Messzelle verschmutzt | Reinigen Sie den Partikelzähler mit sauberem Öl oder Lösungsmittel wie z. B. Isopropanol. Spülen Sie mit sauberem Öl in entgegengesetzte Richtung.              |

DEU

### **Error Code**

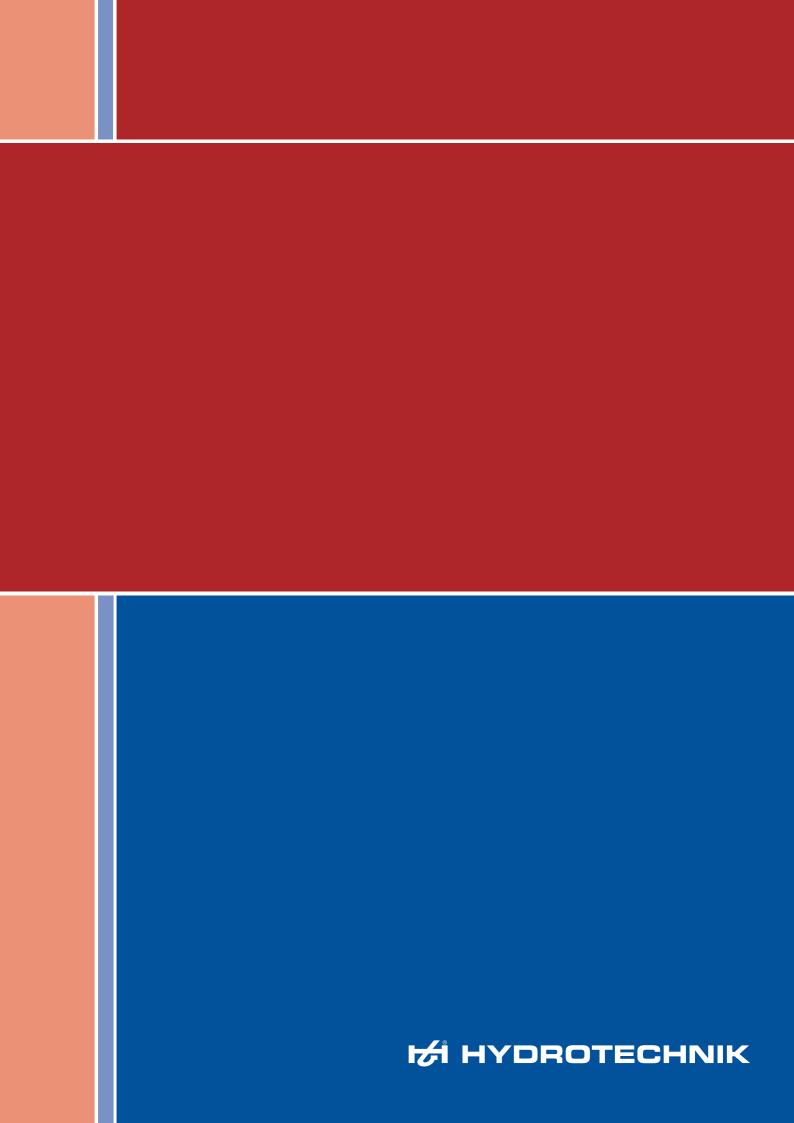
**Patrick** sammelt verschiedene Fehler, Informationen und Betriebszustände und fasst diese in vier 16 Bit Werten zusammen, den ERC (Error Code).

| Bit | ECR 1                           | ECR 2                                       | ECR 3 | ECR 4                                   |
|-----|---------------------------------|---------------------------------------------|-------|-----------------------------------------|
| 0   |                                 | Erster Grenzwert Kalibration (S1) erreicht  |       | Laserstrom zu groß                      |
| 1   |                                 | Letzter Grenzwert Kalibration (S5) erreicht |       | Laserstrom zu klein                     |
| 2   |                                 |                                             |       | Detektorspannung zu<br>klein            |
| 3   |                                 |                                             |       | Detektorspannung zu groß                |
| 4   |                                 |                                             |       | Temperatur >80°C                        |
| 5   |                                 |                                             |       | Temperatur <-20°C                       |
| 6   |                                 |                                             |       |                                         |
| 7   |                                 |                                             |       | Messmodus =<br>Automatik                |
| 8   | $Konzentration \geq ISO~23$     |                                             |       | Messung läuft                           |
| 9   | Fluss zu hoch<br>(Flow < 50)    |                                             |       | Messmodus = Zeitgesteuert               |
| 10  | Fluss zu gering<br>(Flow > 400) |                                             |       | Messmodus =<br>Digital I/O              |
| 11  | $ISO(i+1) \ge ISO(i)$           |                                             |       | Messmodus =<br>Taste                    |
| 12  |                                 |                                             |       | Alarmmodus:<br>0= Standard<br>1= Filter |
| 13  | Autoparts nicht erreicht        |                                             |       | Power Up = 1 vor erster Messung         |
| 14  | Konzentration ≤ ISO 9           |                                             |       | Alarm Konzentration                     |
| 15  |                                 |                                             |       | Alarm Temperatur                        |

Tabelle: ERC



# Fehleranzeige auf dem Display


Nach jeder Messung prüft **Patrick** diverse Bedingungen. Wenn die Prüfung Fehler bei der Messung oder am Gerät ergibt, dann werden diese auf dem Display angezeigt.

Die Fehler werden links auf dem Display angezeigt. Der Fehlertext blinkt. Wenn mehr als ein Fehler angezeigt wird, dann werden die Fehlertexte abwechselnd gezeigt.

| Fehlertext | Bedeutung                    | Error Code                |
|------------|------------------------------|---------------------------|
| FL LO      | Fluss zu gering              | ECR 1, Bit 10             |
| FL HI      | Fluss zu hoch                | ECR 1, Bit 9              |
| CELL       | Fehler in Messzelle          | ERC 4, Bit 0, 1, 2 oder 3 |
| CLO        | Konzentration zu gering      | ERC 1, Bit 14             |
| C HI       | Konzentration zu hoch        | ERC 1, Bit 8              |
| 2 CLN      | Messergebnis nicht plausibel | ERC 1, Bit 13             |

Tabelle: Fehlertexte



